Formation : Salesforce affine le machine learning de Trailhead
Publié par La rédaction le | Mis à jour le
Trailhead s'enrichit des modules de contrôle du machine learning. Objectif : limiter les biais induits par les algorithmes.
Salesforce a annoncé l'intégration de nouveaux modules dans sa plate-forme de formation Trailhead.
La mise à jour en question permet aux développeurs, aux rédacteurs et aux cadres qui animent la plate-forme d'utiliser l'IA de façon responsable et les sensibiliser à l'impact qu'elle peut avoir sur les utilisateurs et l'entreprise.
Il faut dire que le fonctionnement d'une IA reste bien souvent totalement opaque pour l'utilisateur.
C'est d'autant plus le cas en raison de la présence d'algorithmes d'apprentissage automatique qui évoluent au fur et à mesure du traitement des données. Et justement comment évoluent-ils ? Restent-ils dans l'éthique convenue, sont-ils réellement partiaux ?
Pour limiter les déviances, la mise à jour ajoute donc ces nouveaux modules Trailhead, conçus pour aider les clients à mieux comprendre le contenu d'un modèle d'IA.
Avec eux, ils pourront exclure certaines données qui parasitent l'IA et identifier ses déviances facilement.
Autrement dit, les utilisateurs vont pouvoir surveiller l'évolution des algorithmes afin qu'ils évitent de biaiser les résultats par « préjugés ».
Dernièrement, une étude de quatre chercheurs français a révélé que les algorithmes ont tendance à reproduire les valeurs implicites des humains. Et donc à guider parfois vers des décisions biaisées par rapport à un comportement rationnel ou à la réalité.
Une partie des biais repérés sont dits « cognitifs ». Ils sont liés à la manière dont les algorithmes sont écrits. Le programmeur peut avoir suivi des modélisations populaires sans s'assurer de leur exactitude (cas du « mouton de Panurge »). Il peut aussi favoriser sa vision du monde (biais d'anticipation et de confirmation) ou encore déceler des corrélations entre deux événements indépendants (biais de « corrélations illusoires »).
D'autres biais sont dits « statistiques » concernent en premier lieu les données d'entrée - en d'autres termes, celles sur lesquelles les algorithmes s'entraînent.
Les biais des algorithmes peuvent également avoir une motivation financière. Ce sont les biais économiques. Google favorisant ses propres services dans son moteur de recherche en est une parfaire illustration.